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I.. In a previous paper Ll 1 consideration was given to plane tfavelling 
wave systems associated with quasi-linear equations such as 

(1.1) 

We call the travelling wave of rank r a solution of system (1.1) if 

for it the WL - r f~ctional~p~dencies are satisfied: 

tpa(U1....,Um) =o (a=1,...,m--r) (1.2) 

In the given classification the travelling wave of rank 1 coincides 
with the plane travelling wave [l I. 

In the present work are considered travelling waves of rank m - 1. lhe 

following algorism (formal treatment) is suggested to find them. 

Let 

urn = '9 (u,, . . . , %-I) (1.3) 

be the functional dependence determining the travelling wave of rank 

m- l. 

From equation (1.3) there follows that u(t(sr, .-. p &a), 0 = 1, ***p m 
functions havecomaon level lines.Lt these lines satisfy the differential 

equation 

dXi %n 
-q-=--T- (i=i,...,m--1) 

where A, represents any of several functions of x1' . . . . xm. For any 
function f(u,, . . . . u,) we must have 

$+A&%=0 (k=l,...,m---1) 
m 
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The relations (1.3), (1.5) allow us to eliminate in system 

function uII and the derivatives of xra. 

Substituting (1.3), (1.5) into (l.l), we obtain the system 

(1.1) the 

in which 

(1.6) 

where 

System (1.6) represents an overdetermined system into whose coeffi- 

cients enters as a parameter the variable xl. When expressing the condi- 

tion that equation (1.6) apply to any X~ it is necessary to add to (1.6) 

the following equation: 
8Li / dX, = 0 Cl-f9 

Noting that relations 

a,!&0 (y=l,...,m-1) (I.3 
Y 

follow from (1.6) it is seen that equation (1.8) may be written in the 

form 
2.Li=o (1.10) 

8=r &+ A& (y= I,... , n--l) (1.11) 
m Y 

Taking into account (1.5) we obtain the relation 

Accordingly, equation (1.10) takes the following form 

Further consequences 

CVLi 

ax,s= 0 (s = 2, *..) 

lead to the equation 

(1.12) 

(1.13) 

(1.14) 

(1.1s) 

where 

sfi@) = :,&&*-l) - &y(s-I) ;+ (1.16) 
Y 

If hy is regarded as a direct function of x1, . . . . xa, then conditions 

(1.15) represent quasi-linear equations for uo. Tf AYappear as functions 

of q, . . . , Urn-_i, 51, . . . 1 xm, 

then equation (1.5) will be of power s + 1 with regard to derivatives 
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when .Ay -are functions ul, . ..* u~_~, then express- 

will be in the form of powers s + 1 with regard to 

ion of the combatib A further problem appears to be the investigat 

of system (1.151 where one can formally assume 

Ai@@) = /&,a 

lity 

In this manner, system (1.15) will include equations (1.6) and all 

consequences from them and determine the travelling wave. 

Depending on the degree of arbitrariness which we will require from 

the solution Ui = 2z.i (51, . . . ) Em), 

we will obtain various specific limitations on +o 

systems (1.151. 

The arbitrariness of the solution will materia 1 

of the systems (1.15). By this we mean the number 

equations in system (1.151. 

An analogous treatment falgorism) may be 

travelling waves of arbitrary rank. 

2. We consider the gas dynamics equation 

suggested in the case of 

of a polytropic gas: 

“p and thereby various 

ly depend on the rank 

of really independent 

In the adiabatic case, when a 2 = a2(s) L const, considering the vari- 

ables Ui, 8 = [a*/fy - l)]py-I, we obtain 

In the isothermal case p = a’p, a2 = RT= const, y = 1, 0 = lnp and 

equation (2.3) assumes the form 

The systems (2.31, (2.4) belong to type (1.11, therefore to them may 

be applied the formal treatment (algorism) of the determination of 

travelling waves. 

We consider a travel 

polytropic gas. 

In our case 0 plays 

x3; system (1.6) takes 

ling wave of rank 2 of plane motion (nt = 3) of a 

the role of variable u3, and t that of variable 

the form 



On traveliling troves of gas dynaGc equations 259 

Ih- 1) ? + ?I (UI- &)I 2 + ~1 (ug - A,) 2 + ?2 (ul - Al) 2 + 
+ I(y - 1) y 4 ~2 (a, - 412 = 0 

Let us require that with the function # fu,, u,j fixed the travelling 

wave possesses arbitrariness of two functions of one argument. For this 

it is necessary that the rank of the system (2.5) be equal to 2. From 

this condition we arrive at two possibilities: 

(a) ‘?a = A X-tz~=a,(a=1,2) 

(2.6) 

(bj 
a,rpr + a$? = 0 

(al” + az2j [‘?I2 + Y2* - (y - 1) ?I - (u - 1) ‘p (‘ro12 + ‘9z2) = 0 (2.7) 

We limit ourselves to case (a) which appears basic. From (2.6) it 

follows that the lines of level are straight and 

aLi 
A,=---, 

%a 

A = ? + =I2 + %’ 

System (2.5) is reduced to two equations: 

(2.8) 

Li = Aimp, a;- = 0 (i, a, 9 = 1, 2) 
9 

(2.9) 

where A 111 = A,,, = 0, AlIn = - Al,, = 1 (2.1Oj 

.42q3= (y--+&.,-- ?aYP (a, B= 1, 2) 

Rap - is the Kronecker symbol) 

Equation t, = 0 means that the motion is a potential motion. Conditions 

SL, = 0 yield 

Or on writing d+/~3x, = ua where I/I is the potential function, we have 

&+Auo&&p = 0 (2.12) 

Conditions s2Li = 0 have the form 

AizaAy&ti()q&oJl)(iO = 0 (2.13) 

It is easy to see that ail conditions 

c;sL, = 0 (2.14) 
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are fulfilled identically. 

Let us require that equation 6L, = 0 follows from (2.9). For this it 

is necessary and sufficient that the quadratic form 6L, be divisible into 

a linear form L,. Using equation (2.9), condition 6L, = 0 may be reduced 

to the form 

KL (‘9) = 0 (2.15) 
where 

K = 4W#*z--Bz" (2.16) 

WY,) = (V'll+ W(y---4~-?Pz"t f2Wfga'prz + ~(Y.--1)?-~cplW?zz + 11 = 0 
(2.17) 

‘Ihe case K = 0, as is easy to see, leads to the plane travelling wave 

of rank 1. In this manner, we obtain for c$ a quasi-linear equation of the 

second order: 

L (cp) = 0 (2.l8) 

Condition a2L, = 0 with consideration of equations L, = 0, 6L, = 0 
takes the form 

KK,Lz=O (Rx = An&,- &z2f (2.19) 

It follows at once from this that conditions 6*L, = 0, s > 1 do not 
give anything new and equation (2.181 seems a sufficient condition in 

order that solution ui(xl, x2, t)possesses arbitrariness of two functions 
of one argument. 

'lhe motion corresponding to the given solution 4 (ul, u,) of equation 

(2.18) may be obtained in the following manner. Let 

u 1 = U,(% 4 UB = Us@,, x22) 

be the solution of system (2.91, A(U1, CT,) the function corresponding 
to 4 (U,, u2L 

let us draw through every point xIo, x20 of the surface t = to a ray 

%-ml x2--x20 t - to 
A, WI ho, %th Uz@m ~2ofl = A2 IV, ho, ao), U2 ho, eo)l = - 1 

(2.20) 

Along each ray, going through the point xLO, xzO, to we will assume 

u, (r,, 22, q = uci @I*, %I) (2.21) 

In addition to this, everywhere 8 = 4 (U,, U2h 'lhen the functions 

%(% 22, t), 0(x,, x2, 2) = '9[U1("i, Zf, t), u,(x,, xl, tjj 

determine the desired travelling wave. As a consequence of the assumption 

Kf 0 for equation (2.9), one can apply the holographic transformation to 

the equations (2.9) 
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(2.22) 

Since the motion is potential, then 

dx, J da, = dx, i Bu, 

and one can introduce the potential function X(u,, u,) such that 
8X ._II 
% 

= Lr~(U1, IL) (2.23) 

It is clear that X(u,, u2) satisfies equation 

[(~-I)~-?~?]~~ +2?i&E$S + ~(y-~)?-~~2~~~ =o (2.24) 

In this manner, the following theorem is true: 

Theorem 3. If + (u,, u,> satisfies the equation (2.18), then the cor- 
responding travelling wave possesses arbitrariness of two functions of 
one argument and is expressed by means of formulae (2.20) to (2.23) 
through an integral of X(u,, u2) of equation (2.24). 

3, Let us call conical flow the travelling wave of rank 2 in which all 
the straight level lines pass through a single point xlO, xzO, tO’ of the 

phase space fl, x2, t. In other words, the congruence of straight level 
lines turns out to be conical. Lt us prove that the resulting travelling 
waves do not appear, generally speaking, as conical. 

Ihe conical congruence has the following infinitesimal characteristic: 
any straight congruence is intersected by any straight line which goes 
through its infinitesimal neighborhood. Expressing this fact we obtain 
the following conditions of conical flow: 

aA, 848 o __- =; 
ZQ = aq 

aA, aA .__ 
' ax1 = 3;; (3.1) 

From this follow the equations: 

A,r$ +Ar,;: =0 

au: 3% 
A,, aT1 + AB z1 =o (3.2) 

A,, 2 1 
- Azz ;: = 0 

In order that the conditions for being conical be satisfied for any 
travelling waves corresponding to the given function C$ (aI, u,), it is 
necessary and sufficient that equations (3.2) follow from equation (2.9) 
I.e., that the rank of matrix j\Ml be equal to 2, where 

iI O 
1 -1 0 ’ 

h--1)9-%9 - PI% - ‘PlP’a (Y---1)g,--%* li 

jj iv If = Al2 0 A 22 0 

I 

0 411 0 4 

4 11 0 0 -is2 1 

This is only possible for ,b = 0, a,/3 = 1,2. From this, taking into 
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account (2.h), we obtain 

'711 + 1 -= 0, CCr* = 0, ?22 + 1 = 0 (3.3) 

9 = c,, + ClUi + C&J? - +- (Ur2 + u22), A = en + ~1~1 + czuz (3.4) 

In the general case Q does not satisfy conditions (3.3) and the condi- 

tions for being conical (3.2) represent substantially new equations. In 

order that conical flow be not trivial it is necessary to fulfil the con- 

dition; rank of IMj( = 3. 

It is easy to see that all the values of the fourth order matrix M 

will be equal to zero by virtue of conditions (2.18). 

In this mdnner, for any solution $ of equation L(#) = 0, except (3.4), 

the matrix of coefficients of equation (2.91, (3.2) has the rank 3. From 

this we have 

&; = (- 1)“+~A3-a,3- p P (% P = 1,a 

where p is a certain multiplying factor. 

Applying the hodographie transformation to (3.5), we obtain 

(3.5) 

From this follows at once p = const = c, and 

52 =cAd+c, (a = 1, Zf, X = CA + c,u, + c2u2 + ca (3.7) 

It is easy to see that equations (2.18), (2.24) are satisfied, In 

this manner, the following theorem is proved. 

Theorem 2. In the case when 

'? = C,, + crq + C&2 - l/2(@ + u27, 

all travelling waves are conical flows, For the remaining solutions 

L; of L.(6) = 0 the motions, generally speaking, do not turn out to be 

conical, but for any C; in the class of corresponding travelling waves 

there exists a completely determinate conical flow. 

4. Let us apply the results obtained to the solution of the problem 

of gas motion bounded by two surfaces. let the space x1, x2, x3 be an 

infinite volume of stagnant gas, enclosed at the instant where t<O 

inside the corner between planes x, = 0, rZ = 0. At the instant t = 0 
the planes Legin to move according-to the law: 

Xi -= ii (t) (i :z 1. ") ($.!I 

It is clear that the motion will be two dimensional, not depending on 

the coordinate .x3. In the following we will itIi!rrti.fy plane x7 = 0 with 

the plane of the diagram, planes .zi = const.~~il accordingly be 

represented by the coordinate lines. 

!‘non first examination we will assume function fift) to be such that 
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until the instant of time Tthere will be no strong discontinuities in 

the motion. 'lhen, at a certain instant of time t < T in the plane x1, x2 
we will have the following picture of the motion (Fig.1). 

In region I we have stagnant gas 

U,-_-_ Up_ 0, 0 = 00 L-. co" /(y- I) (4.2) 

In region II (vertical strip above AC) we have one-dimensional motion, 

not depending on x2 and proving to be a plane travelling wave (wave of 

rank 11, i.e., a Riemann wave, to which the well-known relationships 

apply: 

l42 = 0, Ul -z g1 IZl - (u1+ c) tl, 

2 2 

w--y--lc”-~co (‘1.3) 

Line yl, dividing region II from region I will be straight x1 = cot, 

In region III (horizontal strip to the right of FE) we also have one 

dimensional motion, not depending on x1. 'Ihis also is a Riemann wave: 

u, = 0, u: = g2 [% - @a + c) t1, 
3 2 

u?-----_c-- 
y--l Y-l CI) (4.4) 

The line yz, the boundary between regions I and III, is straight. 

x2 = cot. In region IV we will look for motion of the type of travelling 

wave of rank 2. 

Since for any function $I (u,, u,) that is the solution of equation 

L(4) = 0, the travelling wave of rank 2 must possess two functional 

arbitrarinesses then we can 

A 
i 

I; A r, -------__ _-__ l---__- ____ 

m 
s=fi/o 

m 

B 
.4 = fr (tJ 

a 

Fig. 1. Fig. 2. 

satisfy the boundary condition ui = fi(t), possessing that same arbit- 

rariness. 

The condition which fixes the function 95 (u,, u,) is the condition of 

uninterrupted connection (or continuity) of the solution in region IV to 

the solutions in regions II and III. 

It is easy to see that they have the form 
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In this manner, S$ must be identified with that solution of equation 

L(4) = 0 which satisfies the boundary conditions (4.5). We have the 

problem of Goursat for quasi-linear equations of the second order. 

5. Let us consider isothermal gases. 'Then 

y= 1, 0 = lnp, ad =RT = const. 

For simplicity, we assume a2 = 1. All the results of preceding problems 

are automatically transferred to the isothermal gases. 

The boundary problem of the preceding section has the following form: 

L(p) = fi- 'p2z)(911+ f)$_ %w2%2 ffi - 'pi2)(%2 + 1) = 0 (S.f) 

P(% 0) = 3 + $0, P@, Uzf = @2 + 00 (5.2) 

It is easy to see that the solution of this problem is the function 

'P = ul+ a2 + e0 (5.3) 

Function X(u,, u,) must satisfy equation 

(5.4) 

which in the case of (5.3) takes the form: 

%2X o 
au,t3uz= 

(M) 

From this follows at once xi = xi(ui,tf. The picture of the motion 

assumes the form shown in Fig.2. 

Sections AC and EC represent continuations of lines y2 and yl, 

respectively. In this manner, regions I to IV are bounded by mutually- 

orthogonal straight lines. 

'Ihe equations of the straight lines y1 and y2 respectively are 

F rther we have In regronxlIzfl 

I? = 1 (:,.6) 
u 

I(* = z.42 = 0, (5.2, 

in region II 142 = 0, al= g1 @It 1) (5.8) 

in region III UI =o, a2 = g2@2, If (5.9) 

in region IV VI = g1h f)> 3.42 = gz(z2, t) (5.40) 

in region I to IV u= uI+u2+eo (5.11) 

Function gi(xi, t) is the fundamental solution of equation 

Ui = F, [Zi -(z$ + 1)1) (5.14,) 

where function F;(t) is related to fi(t) by the equation 

fi’(G = F, lfi @I - vi’+ 1) tl (5.13) 

Formulae (5.6) to (5.13) give a complete solution of the problem under 

consideration of the motion of a isothermal gas enclosed inside the 

straight corner in the assumed absence of strong discontinuities. Straight 

lines yl, y2 appear to be lines of weak discontinuities (discontinuities 
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of derivatives &,/dxj ihi/&, ~~/a~j, &/dt). 

Of course, there may still be other discontinuities besides in the 
regions II, III and IV. 

For instance when 

fi (q L= ci < 0 (5.14) 

Fig, 3. 

The picture of the motion assumes the form shown in Fig.3. 

In the regions I, Ia, Ib, Ic we have a motion with constant parameters: 

(I) u1= 0 l&a = 0; (15) u1=0, ug=c‘J 

(14 u1= Cl, l.48 = 0; (14 Ul = Cl, Ug= Ca (5.q 

In the regions II, Ha, III, IIIa we have plane travelling waves 
O&mann waves): 

VI) u1=x$--1, u2 = 0 

UIa) u1= x1/t - 1, uq = c3 

(III) u1 = 0, U3 = X3/t - 1 (5.16) 

(Illa) u1 = Cl, u3 = x3/t - 1 

In region IV we have a travelling (conical) wave of rank 2: 

= xsjft - 1 (5.17) 

Fig. 4. 

Conditions in all regions are governed by the 
lines yi, ri dividing the mentioned regions move 

(Tr) 21 = elt, u-1) 

(Y2) %=+I + 1)L (J-4 

(Yas) x, = t, m 

relation (5.11). lhe 
according to the law 

12 = c$ 

q = (c:! -+ 1) (5.18) 

g = 1 
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6enerally the motion is conical (self similar or centered wave). 

6. Let us now consider motions in which strong discontinuities may 
occur, confining aurselves to the case of an isothermal gas. 

'Ihe Hugoniot conditions for an isothermal gas with u* = 1 have the 

form: 

,I, -. I& --_ ,l/" -.~ jj- 
0' 

0, --t& = InM, Gil" -I- D--U{, (ti.l) 

Here the index (0) corresponds to conditions ahead of the front, the 

index (1) refers to conditions behind the shock waves. It is easy to see 

that the configuration of two steady and compatibfe shock fronts move 

with constant speed through a gas at rest in mutually orthogonal direct- 

ions (Fig.4). 

If the speed of front y1 equalsD1 

D;, then we have by virtue of (6.1) 

and the speed of front yZ equals 

in region II 

in region III (6.2) 

'Ibe above relations take into account the compatibility conditions in 

all shock fronts. 

Steady and compatible also is the configuration of shock wave ytt and 

the Riemann travelling waves (y2, y? ) in the case where they travel in 

mutually orthogonal directions. (Fig.5). 

'Ihe motion in that case is characterized in the following manner: 

The conditions of compatibility are fulfilled on all boundaries. The 

motion considered in Figs. 4 and 5 can be obtained when one of the edges 

of the straight corner moves with a constant positive speed and the other 

either also with a constant positive speed or according to a certain law 

x = f(t) insuring the absence of strong discontinuities. Surmaarizing 

investigations of sections 5 and 6, one can formulate the following 

theorems 

7L:re:: 3. Let the edges of a straight corner move according to a law 
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Xi = fi(t), i = 1,2. lhen the x1, 

gonal straight lines yl, yz 

x2 plane is cut by two mutually-ortho- 

into four regions I to IV (Fig.2),so that the 

following regime of motion prevails: 

u1 = 0, Up = 0 0 = 00 in region I 

Ul = a"1 (21, Q, lL* = 0 0 = 0"$_ u1fct in region II 
11, = 0, 112 = g, (xnl) 6 = 6” + uz + c: in region III 
~l=gl(~i* qt U% = g2h t) @=uo+@l+U2+C3 in region IV 

'Ihis representation is true even for the case when for one ififtl = 
ci > 0. Then the respective boundary yi is a shock wave, proceeding with 

constant speed: in the remaining cases yi is a line of weak discontinuity. 

When shock waves are absent, ci = c2 = c3 = 0. 
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